Reg. No. :	
Name :	0000

II Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.) Examination, March 2014 PHYSICS

PH 202 : Quantum Mechanics - I

Time: 3 Hours Max. Marks: 50

Instructions: 1) Section A - Answer any 2 questions - 2×10=20 Marks.

- 2) Section B Answer any 5 questions 5x3=15 Marks.
- 3) Section C Answer any 3 questions 3x5=15 Marks.

SECTION - A

Answer any 2 questions. Each carries 10 marks.

- 1. Distinguish between Heisenberg and Schrodinger pictures. Show that the state vectors and operators are the same in both the pictures at t=0.
- 2. Explain general angular momentum and obtain the eigenvalues of J^2 and J_z .
- 3. Discuss the effect of time reversal in time independent Schrodinger equation.
- 4. Discuss the time independent perturbation theory for the non-degenerate stationary state. Obtain the corrected eigenfucntions and eigen values.

SECTION - B

Answer any 5 questions. Each carries 3 marks.

- 5. What are Clebsh-Gordan coefficients?
- 6. Outline Dirac's bra and ket notations.
- 7. What is a unitary transformation ? In a unitary transformation show that the operator equation remains unchanged in form.
- 8. Why the hydrogen in the ground state does not show a first order Stark effect?

P.T.O.

M 25139

- 9. Distinguish between non-degenerate and degenerate cases in perturbation theory.
- What is symmetry transformation ? Prove that a symmetry transformation conserves probabilities.
- 11. What are Pauli spin operators?
- 12. The result of the variation method always give an upper limit for the ground state energy of the system. Why?

SECTION-C

Answer any 3 questions. Each carries 5 marks:

- 13. Find the eigenvalues and the eigenfunctions of the operators s_x , s_y , s_z in the representation by Pauli's matrices in which s_z is diagonal.
- 14. Prove that every matrix representative of a component of vector J which satisfies $J \times J = iJ$ has zero trace.
- 15. The translation operator Ω (a) is defined to be such that $\Omega(a)\phi(x) = \phi(x+a)$. Show that (a) Ω (a) may be expressed in terms of the operator $p = \frac{h}{2\pi i} \frac{d}{dx}$ and (b) Ω (a) is unitary.
- 16. The wavefunction of a particle in a state is $\psi = N \exp(-x^2/2\alpha)$, where $N = \left(\frac{1}{\pi\alpha}\right)^{1/4}$. Evaluate $(\Delta x)(\Delta p)$.
- 17. Use the variation method to estimate the g round state energy of a particle in the potential $V = \infty$ for x < 0 and V = kx for x > 0. Choose $xe^{-\alpha x}$ σ as the trial wavefunction.

